matisées en e, f et g sur la Fig. 6. Lorsque la liaison e manifeste, liant les 'piles' suivant \overrightarrow{Oy} , la face {001} se développe. De la même façon les liaisons f et g entraînent respectivement la croissance des faces {011} et {011} les trois liaisons étant de force comparable, il en est de même pour le développement des faces du cristal.

La comparaison de cette structure avec celle de la forme α montre qu'elles sont très différentes: on ne voit pas apparaître un mouvement simple des molécules pouvant expliquer la formation de la forme stable (α) à partir de la forme métastable (β). Par contre, l'arrangement des molécules de la forme β décrite ci-dessus et celui du *p*-crésol C₆H₅OCH₃ (Bois, 1966, 1970) sont identiques; cet arrangement du *p*-crésol, qui semble correspondre à une forme stable, nous suggère que l'empilement des atomes de chlore distants l'un de l'autre de 4,14 Å est une des causes de l'instabilité du *p*-chlorophénol β . Cette instabilité ne semble pas exister lorsque l'on superpose des groupes CH₃ dans une structure identique (cas du *p*-crésol).

La forme stable (α) du *p*-chlorophénol ne laisse pas apparaître de superposition de chlores; au contraire les molécules liées par centre de symétrie montrent un voisinage chlore-oxygène. L'étude du polymorphisme de ces composés est poursuivie au moyen d'autres méthodes afin d'établir si, comme le pensent certains auteurs, les défauts jouent un rôle important dans cette transformation polymorphique.

Références

BOIS, C. (1966). Bull. Soc. Chim. Fr. pp. 4016–4021. BOIS, C. (1970). Acta Cryst. B26, 2086–2092. PERRIN, M. (1968). C. R. Acad. Sci. Paris, 267, 1225–1226. PERRIN, M. & MICHEL, P. (1973). Acta Cryst. B29, 253–258. WU, V. Y. (1968). Z. Kristallogr. 126, 66–75.

Acta Cryst. (1973). B29, 263

Structure Cristalline et Moléculaire du Diphényl-2,2 Sila-2 Indane

PAR J. P. VIDAL ET J. FALGUEIRETTES

Laboratoire de Minéralogie Cristallographie, Université Montpellier II, Place Eugène Bataillon, 34060-Montpellier Cedex, France

(Reçu le 19 septembre 1972, accepté le 9 octobre 1972)

The crystal structure of 2,2-diphenyl-2-silaindane, $C_{20}H_{18}Si$, has been determined from single-crystal X-ray intensity data collected with an automated diffractometer using Cu K α radiation. The compound crystallizes in the monoclinic space group $P2_1/c$ with cell dimensions $a=8\cdot379$, $b=24\cdot542$, $c=7\cdot938$ Å and $\beta=98\cdot00^{\circ}$. The structure was solved by direct methods and refined by full-matrix least-squares calculations, including anisotropic thermal parameters. The final R value is 0.037 for 1354 reflexions.

La synthèse et l'étude chimique du diphényl-2,2 sila-2 indane ont été effectuées dans le laboratoire de M le Professeur Corriu.

L'étude cristallographique de ce composé a été entreprise en vue de déterminer la conformation précise de la molécule et la stéréochimie du silicium. Cette étude rentre dans le cadre de la détermination des structures d'un ensemble de composés organo-siliciés cycliques.

Partie expérimentale

Le diphényl-2,2 sila-2 indane est purifié par recristallisation lente dans l'hexane. Les cristaux sont essentiellement prismatiques et allongés suivant c. Le cristal utilisé était un parallélépipède ayant pour dimensions: 0,53 mm (parallèlement à c), 0,12 mm (a*) et 0,16 mm(b).

Les valeurs des paramètres ont été précisées par affinement des moindres carrés, en utilisant les angles de diffraction de 63 réflexions mesurés avec précision

sur le diffractomètre automatique Enraf-Nonius du laboratoire.

Données cristallographiques

$a = 8,379 \pm 0,004 \text{ Å}$	$\beta = 98,00 \pm 0,05^{\circ}$
$b = 24,542 \pm 0,006$	$V = 1613 \text{ Å}^3$
$r = 7,938 \pm 0,004$	Z=4.

Coefficient linéaire d'absorption pour le rayonnement Cu $K\alpha$,

$$u_l = 11,56 \text{ cm}^{-1}$$
.

Groupe spatial $P2_1/c$ (d'après les extinctions systématiques). Densité mesurée $1,18 \pm 0,02$ g cm⁻³.

Densité calculée $1,18 \pm 0,02$ g chi Densité calculée 1,17.

Enregistrement des intensités

Le cristal utilisé était monté suivant c. 2709 réflexions indépendantes (sin $\theta/\lambda < 0.6$) ont été mesurées à l'aide du diffractomètre automatique Enraf-Nonius.

STRUCTURE DU DIPHENYL-2,2 SILA-2 INDANE

Tableau 1. Facteurs de structure observés et calculés

	אי איז ביו ביו איז איז ג'ין ג'ין ג'ין ג'ין ג'ין ג'ין ג'ין ג'ין
	ריויין איז
	לווידלא ברולא היה היה היה היה להיות היה היה היה היה היה לא היה היה היה היה היה היה היה היה היה הי
	ר לביה לכון הברו איבליוויז, היו שליטיים לא היו אינו אינו אינו אינו אינו אינו אינו אי
ר אין	
	<u>1</u> , 42323322, 2043238234484244444444444444444444444444
0 Fc	
HKI	Κ
	HKI
	ר לאליוזאל אילי לאלוציע אילי אילי אילי אילי אילי אילי אילי אי
	Longer and a second state of the second state of t

Les intensités ont été enregistrées en employant la méthode de balayage $\theta/2\theta$ et la radiation Cu K α . La mesure périodique de 3 réflexions de référence a mon-

Fig. 1. Projection de la structure parallélement à [001].

tré une stabilité à 3% près de l'intensité diffractée au cours du temps; aucune correction n'a été apportée.

Détermination de la structure

Tous les calculs ont été effectués sur ordinateur IBM 360-40 128K octets. Les principaux programmes utilisés sont: *Logical Symbolic Addition Method*, Germain, Main & Woolfson (1970); synthèse de Fourier, Vidal, Lapasset & Falgueirettes (1970); affinement isotrope, Lapasset (1972); affinement anisotrope (version modifiée), Busing, Martin & Levy (1962).

Les intensités mesurées ont été corrigées par les facteurs de Lorentz-polarisation. Nous n'avons pas effectué la correction d'absorption. Les facteurs de diffusion atomiques ont été ceux de Doyle & Turner (1968) pour les atomes de carbone et de silicium et ceux de Stewart, Davidson & Simpson (1965) pour l'hydrogène.

Les signes des facteurs de structure ont été déterminés par la méthode d'addition symbolique (Karle & Karle, 1966).

Le facteur échelle absolue et le coefficient global de température ont été obtenus par la méthode statistique de Wilson. Les facteurs de structure mis à l'échelle et corrigés de l'agitation thermique ont permis de calculer les valeurs des facteurs normalisés |E|. Les signes des facteurs de structure ont été directement recherchés à partir des 267 facteurs de structure normalisés les plus forts |E| > 1,70.

Les réflexions choisies comme base de départ sont:

h	k	l	E	signe	h	k	l	E	signe
1	2	1	3,54	+	5	10	3	4,11	а
3	7	4	3,47	+	5	15	2	3,76	b
6	15	0	3,49	+	0	5	1	2,91	С
					3	15	2	2,68	d

Tableau 2. Paramètres de position et d'agitation thermique

Les écarts types portant sur la dernière décimale sont donnés entre parenthèses; le facteur d'agitation thermique est égal à: exp $[-(h^2\beta_{11}+k^2\beta_{22}+l^2\beta_{33}+2hk\beta_{12}+2hl\beta_{13}+2kl\beta_{23})\times 10^{-4}$ sauf pour les atomes d'hydrogène pour lesquels *B* est isotrope.

	x	У	Z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Si	0,8762 (1)	0,1149 (0,5)	0,8448 (1)	107 (1)	14 (0,2)	137 (2)	1 (0,6)	26 (1)	1 (0,6)
C(2)	0,8598 (4)	0,0470 (2)	0,7355 (4)	115 (6)	16 (1)	132 (7)	0 (2)	45 (6)	5 (2)
C(3)	0,7322 (5)	0,0368 (2)	0,6080 (6)	120 (7)	18 (1)	222 (9)	0 (2)	19 (7)	-6(2)
C(4)	0,7200 (5)	-0,0130(2)	0,5242 (6)	157 (8)	26 (1)	204 (10)	-13 (3)	23 (7)	-16(3)
C(5)	0,8326 (6)	-0,0540(2)	0,5650 (6)	226 (10)	16 (1)	213 (10)	-7(2)	111 (8)	-7(2)
C(6)	0,9578 (6)	-0,0450(2)	0,6888 (6)	219 (10)	18 (1)	195 (10)	15 (2)	57 (8)	8 (2)
C(7)	0,9730 (5)	0,0051 (2)	0,7728 (5)	186 (8)	18 (1)	137 (8)	6 (2)	23 (6)	6 (2)
C(8)	0,7278 (4)	0,1196 (2)	1,0007 (5)	120 (6)	16 (0,8)	145 (7)	3 (2)	26 (5)	2 (2)
C(9)	0,7098 (5)	0,1683 (1)	1,0874 (6)	183 (8)	19 (1)	186 (9)	-9(2)	50 (7)	-8(2)
C(10)	0,6003 (6)	0,1726 (2)	1,2032 (5)	234 (10)	22 (1)	181 (10)	2 (2)	73 (8)	-16 (2)
C(11)	0,5079 (6)	0,1274 (2)	1,2333 (6)	189 (8)	27 (1)	171 (9)	4 (3)	74 (7)	-1 (2)
C(12)	0,5247 (6)	0,0788 (2)	1,1520 (6)	197 (9)	22 (1)	207 (10)	-9(2)	85 (7)	5 (2)
C(13)	0,6336 (5)	0,0745 (1)	1,0353 (5)	176 (8)	16 (1)	188 (9)	-2(2)	61 (7)	-1 (2)
C(14)	0,8574 (4)	0,1727 (1)	0,6860 (5)	128 (6)	17 (0,8)	175 (8)	6 (2)	27 (6)	8 (2)
C(15)	1,0329 (5)	0,1811 (1)	0,6592 (5)	157 (7)	12 (0,7)	192 (8)	0 (2)	66 (6)	1 (2)
C(16)	1,078 (5)	0,2064 (1)	0,5156 (6)	209 (9)	17 (1)	239 (10)	12 (2)	87 (8)	19 (2)
C(17)	1,2408 (7)	0,2110 (2)	0,4997 (7)	264 (11)	16 (1)	297 (12)	4 (2)	168 (10)	12 (2)
C(18)	1,3561 (6)	0,1902 (2)	0,6220 (7)	170 (9)	21 (1)	310 (13)	-11 (2)	125 (8)	-14 (3)
C(19)	1,3131 (5)	0,1647 (2)	0,7649 (5)	128 (7)	21 (1)	203 (9)	-6(2)	35 (6)	-12 (2)
C(20)	1,1499 (4)	0,1603 (1)	0,7834 (5)	123 (7)	15 (0,8)	170 (8)	-4 (2)	30 (6)	-7(2)
C(21)	1.0901 (4)	0.1326 (2)	0.9334 (5)	126 (7)	22 (1)	147 (7)	-6(2)	17 (6)	0 (2)

Tableau 2 (suite)

			B isotrope
0,643	0,067	0,574	4,4
0,621	-0,020	0,425	5,2
0,820	-0,092	0,450	4,9
1,045	-0,076	0,722	5,0
1,074	0,011	0,868	4,3
0,781	0,203	1,064	4,7
0,587	0,210	1,268	5,3
0,422	0,130	1,321	5,2
0,454	0,044	1,178	5,1
0,645	0,030	0,971	4,4
0,988	0,222	0,418	5,1
1,276	0,230	0,390	5,8
1,480	0,193	0,607	5,5
1,403	0,148	0,860	4,5
0,809	0,208	0,737	4,0
0,783	0,161	0,570	4,0
1,158	0,096	0,970	4,1
1,094	0,159	1,039	4,1
	0,643 0,621 0,820 1,045 1,074 0,781 0,587 0,422 0,454 0,645 0,988 1,276 1,480 1,403 0,809 0,783 1,158 1,094	$\begin{array}{cccccc} 0,643 & 0,067 \\ 0,621 & -0,020 \\ 0,820 & -0,092 \\ 1,045 & -0,076 \\ 1,074 & 0,011 \\ 0,781 & 0,203 \\ 0,587 & 0,210 \\ 0,422 & 0,130 \\ 0,454 & 0,044 \\ 0,645 & 0,030 \\ 0,988 & 0,222 \\ 1,276 & 0,230 \\ 1,480 & 0,193 \\ 1,403 & 0,148 \\ 0,809 & 0,208 \\ 0,783 & 0,161 \\ 1,158 & 0,096 \\ 1,094 & 0,159 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Nous avons obtenu cinq solutions pour les signes des 267 facteurs conservés.

Une synthèse de Fourier tridimensionelle à partir de la première solution a fait apparaître tous les atomes (C et Si) malgré une mauvaise résolution de certains pics de l'hétérocycle.

Pour la détermination de la structure, nous n'avons conservé que 1354 réflexions indépendantes qui vérifiaient l'inégalité $\Delta N/N < 0.02$ (N étant le nombre de coups enregistré sur le compteur à scintillation pour la mesure d'une réflexion).

Les coordonnées atomiques trouvées ont été améliorées par une nouvelle synthèse de Fourier tridimensionelle. Un calcul de facteurs de structure en affectant les atomes (C et Si) de coefficient d'agitation thermique isotrope égaux à 3,5 Å² a donné un facteur de reliabilité R=0,40. Trois cycles d'affinement isotrope, ne portant que sur les coordonnées atomiques, ont abaissé R jusqu'à la valeur 0,13. A ce stade nous avons entrepris des affinements anisotropes et nous avons tenu compte des atomes d'hydrogène. La position de ceux-ci a été déterminée avant chaque cycle en fonction des coordonnées des atomes porteurs et voisins. Nous avons attribué à chaque atome d'hydrogène un facteur d'agitation thermique isotrope égal au facteur d'agitation isotrope moyen de l'atome porteur. L'ordinateur utilisé n'ayant pas une capacité de mémoire suffisante, il a été impossible d'affiner en une seule fois tous les paramètres des atomes de carbone et silicium du motif de base. Un cycle complet nécessite deux passages: le premier pour affiner les cycles phényles, le second pour le reste du motif.

Dans la fonction à minimiser $\sum W(|F_o| - |KF_c|)^2$ le poids d'une réflexion a été gardé égal à 1.

En trois cycles d'affinement R s'abaissa jusqu'à la valeur 0,037. Un calcul de facteurs de structure effectué en utilisant les paramètres de position et d'agitation thermique trouvés précédemment, et portant sur la totalité des réflexions mesurées (2709), a donné un facteur de reliabilité de 0,062.

Le Tableau 1 donne la liste des facteurs de structure observés et calculés des 2709 réflexions. Le Tableau 2 donne celui des paramètres de position et d'agitation thermique avec leurs écarts types.

Description de la structure

La Fig. 1 donne la projection de la structure parallèlement à [001].

Les distances interatomiques et les angles de valence sont donnés sur la Fig. 2, leurs écarts types dans le Tableau 3.

Précision des résultats et agitation thermique

Le Tableau 4 donne l'écart type sur la position des atomes.

Tableau 4. Ecarts types sur la position des atomes

	$\sigma(r)$		$\sigma(r)$		$\sigma(r)$
Si	0,0012 Å	C(8)	0,0043 Å	C(15)	0,0042 Å
C(2)	0,0040	C(9)	0,0047	C(16)	0,0048
C(3)	0,0047	C(10)	0,0051	C(17)	0,0058
C(4)	0,0053	C(11)	0,0051	C(18)	0,0056
C(5)	0,0053	C(12)	0,0049	C(19)	0,0046
C(6)	0,0051	C(13)	0,0044	C(20)	0,0041
C(7)	0,0046	C(14)	0,0041	C(21)	0,0042

Tableau 3. Distances interatomiques, angles de liaison et leurs écarts types

Dista	nces	Angles		Dista	nces	Angles	
SiC(2)	1,875 (4) Å	C(2)—Si— $C(8)$	110,32 (18)°	SiC(14)	1,890 (4) Å	C(2)—Si—C(14)	111,39 (18)
C(2) - C(3)	1,389 (6)	Si - C(2) - C(3)	119,78 (31)	C(14) - C(15)	1,529 (6)	C(2)-SiC(21)	112,54 (18)
C(3) - C(4)	1,391 (7)	Si - C(2) - C(7)	123,34 (30)	C(15) - C(16)	1,396 (6)	C(8)—Si— $C(14)$	113,06 (19)
C(4) - C(5)	1,386 (7)	C(3) - C(2) - C(7)	116,87 (38)	C(16) - C(17)	1,388 (7)	C(8)—Si—C(21)	115,05 (18)
C(5) - C(6)	1,353 (7)	C(2) - C(3) - C(4)	120,31 (40)	C(17) - C(18)	1,370 (7)	C(14)-Si-C(21)	93,56 (18)
C(6) - C(7)	1,397 (6)	C(3) - C(4) - C(5)	121,67 (43)	C(18) - C(19)	1,386 (7)	Si - C(14) - C(15)	101,58 (26)
C(7) - C(2)	1,402 (6)	C(4) - C(5) - C(6)	118,96 (44)	C(19) - C(20)	1,399 (6)	C(14)-C(15)-C(16)	123,42 (38)
Si—––C(8)	1,876 (4)	C(5) - C(6) - C(7)	120,12 (45)	C(20)-C(21)	1,515 (6)	C(14)-C(15)-C(20)	116,73 (36)
C(8) - C(9)	1,399 (6)	C(6) - C(7) - C(2)	122,06 (41)	C(20) - C(15)	1,388 (6)	C(16)-C(15)-C(20)	119,81 (39)
C(9) - C(10)	1,390 (7)	SiC(8)C(9)	120,25 (32)	C(21)-Si	1,882 (4)	C(15)-C(16)-C(17)	119,54 (43)
C(10) - C(11)	1,393 (7)	Si - C(8) - C(13)	121,44 (32)			C(16) - C(17) - C(18)	120,58 (47)
C(11)-C(12)	1,373 (7)	C(9) - C(8) - C(13)	118,31 (37)			C(17)-C(18)-C(19)	120,68 (45)
C(12) - C(13)	1,391 (6)	C(8) - C(9) - C(10)	121,08 (41)			C(18)-C(19)-C(20)	119,31 (40)
C(13) - C(8)	1,403 (6)	C(9) - C(10) - C(11)	119,14 (44)			C(19)-C(20)-C(21)	123,50 (36)
. , . ,		C(10)-C(11)-C(12)	121,04 (45)			C(19)-C(20)-C(15)	120,07 (38)
		C(11)-C(12)-C(13)	119,89 (44)			C(21)-C(20)-C(15)	116,43 (35)
		C(12)-C(13)-C(8)	120,53 (40)			C(20)-C(21)-Si	102,25 (26)

Pour chaque atome, nous avons calculé les valeurs des écarts quadratiques moyens, suivant les trois axes principaux des ellipsoïdes d'agitation thermique. L'orientation des ellipsoïdes est donnée dans le repère orthonormé x'yz dont les axes sont dirigés suivant $\mathbf{a}^*, \mathbf{b}, \mathbf{c}$. Les résultats sont donnés dans le Tableau 5. L'anisotropie thermique est très marquée dans les cycles phényles pour C(4), C(5), C(6) et C(10), C(11), C(12) et dans le double cycle pour C(16), C(17), C(18).

Géométrie de la molécule

Le Tableau 6 donne les équations des principaux plans moyens dans le système d'axes orthonormés xyz' dirigés suivant **a**, **b**, **c**^{*}, et les distances des atomes à ces plans.

Cycles phényles

Les cycles phényles peuvent être considérés comme plans, l'écart maximum est de 0,007 Å par rapport au plan moyen.

Tableau 5. Mouvements d'agitation thermique et orientation des ellipsoïdes d'agitation thermique

		Cosin	us directeurs	suivant			Cosin	us directeurs	s suivant
	$\sqrt{u^2}$	Ox'	Оу	Oz		$\sqrt{u^2}$	Ox'	Оу	Oz
	•				C(11)	0,273	0,821	-0,269	0,631
Si	0.188	0.865	0.117	-0.383	- ()	0.291	0.282	0.958	0.098
51	0,215	0,162	0.866	0.497		0.199	0.516	-0.096	-0.782
	0,215	0,102	-0.487	0 791		0,122	0,010	0,020	0,702
	0,200	0,470	0,407	0,771	C(12)	0.290	0.812	-0.240	0.656
C(2)	0.216	0.687	-0.620	0 486	- ()	0.265	0.043	-0.889	-0.450
C(2)	0,210	0,371	0 749	0,602		0,200	0,598	0,390	-0.622
	0,250	0,641	0 231	-0.648		0,200	-,	0,000	0,022
	0,170	0,041	0,251	0,010	C(13)	0.267	0.794	-0.112	0.718
C(3)	0 205	1 009	-0.002	0 1 1 4	0(10)	0.226	0.030	0.989	0.149
C(3)	0,203	0,011	0,002	0.377		0,215	0,623	0,096	-0.694
	0,233	0,011	-0.375	0,377		0,215	0,025	0,070	0,074
	0,209	0,024	-0,375	0,750	C(14)	0.204	0.876	_0.490	0 208
C(4)	0.214	0 795	0.400	0.403	C(14)	0,204	0,375	- 0,490	0,200
C(4)	0,214	0,783	0,499	0,493		0,232	0,333	0,099	0,000
	0,303	0,324	-0,839	0,465		0,219	0,374	0,321	-0,717
	0,245	0,547	-0,219	-0,/36	0(15)	0.000	0 722	0.020	0.505
					C(15)	0,203	0,732	-0,038	-0,585
C(5)	0,314	0,816	-0,189	0,672		0,194	0,006	0,999	-0,046
	0,221	0,194	0,980	0,080		0,265	0,695	0,030	0,822
	0,203	0,563	-0,065	0,749					
					C(16)	0,316	0,659	0,410	0,729
C(6)	0,297	0,838	0,452	0,444		0,204	0,076	-0,872	0,494
	0,216	0,419	-0,892	0,240		0,231	0,762	-0,267	-0,494
	0,235	0,378	-0,015	-0,875					
					C(17)	0,363	0,745	0,141	0,764
C(7)	0,262	0,874	0,496	0,186		0,230	0,422	-0,864	-0,224
- ()	0.236	0,485	-0,787	-0,320		0,199	0,536	0,484	-0,621
	0.201	0.143	-0.366	0,940					
	-,	-,	,	,	C(18)	0,193	0,853	0,117	-0,404
C(8)	0.199	0.883	-0.198	-0.320		0.244	0,068	0,945	0,330
0(0)	0,230	0.366	0.873	0.377		0.340	0.536	-0.306	0,865
	0,212	0,325	-0.446	0.881		- ,	-,	- ,	
	0,212	0,020	0,110	0,001	C(19)	0.207	0.979	0.172	-0.038
C(0)	0 276	0 718	0 536	0.555	0(17)	0.279	0.247	-0.741	0.660
C(J)	0,273	0,142	0,550	0,555		0 231	0,021	0 649	0.763
	0,223	0,142	0,742	-0.506		0,231	0,021	0,015	0,100
	0,227	0,090	0,402		C(20)	0.200	0.883	0 484	0.083
C(10)	0 206	0 979	0 722	0.557	C(20)	0,200	0,336	-0.657	-0,005
C(10)	0,296	0,070	-0,235	0,337		0,209	0,350	0,037	-0,030
	0,275	0,412	0,033	- 0,312		0,244	0,557	-0,578	0,785
	0,190	0,279	-0,499	-0,705	C(21)	0 206	0 082	0.226	0 186
					C(21)	0,200	0,902		_0.035
						0,204	0,232	0,271	_0.033
						0.215	0.034	0.077	- 0,994

La moyenne des longueurs de liaisons est, pour le cycle formant le plan 3: 1,386 Å, pour l'autre: 1,391 Å.

Double cycle

Les atomes contenus dans le double cycle appartiennent à deux plans différents. Le premier (noté 1) contient les atomes Si, C(14) C(21), le second (noté 2) les atomes C(15), C(16), C(17), C(18), C(19), C(20).

La valeur du dièdre aigu formé par ces 2 plans est $30,95^{\circ}$. Cet angle est bien moins important que pour le diphényl-2,2 sila-2 trihydro-1,3,4 naphtalène (Vidal, Lapasset & Falgueirettes, 1972). Les longueurs des liaisons C(14)-C(15) et C(20)-C(21) sont légèrement inférieures à la longueur d'une simple liaison.

La moyenne des longueurs de liaison du cycle aromatique est 1,388 Å.

Conformation de l'atome de Si

Les angles de valence du silicium et la distance des atomes de carbone formant les sommets du tétraèdre sont indiqués sur la Fig. 3.

L'angle des liaisons C(14)–Si et Si–C(21) qui vaut 93,56° est inférieure à la valeur théorique 108° d'un cycle à 5 atomes, cette diminution de l'angle est en relation avec l'ouverture des angles C(14)–C(15)–C(20) et C(15)–C(20)–C(21) provoquée par le cycle aromatique.

Les longueurs des liaisons Si- φ (sp^3 - sp^2) sont égales à 1,875 Å et celles Si-C (sp^3 - sp^3) à 1,886 Å.

Conclusion

L'étude respective des composés diphényl-2,2 sila-2, *d*3 bromo tétralone-1 (Vidal, Galigné & Falgueirettes, 1972), diphényl-2,2 sila-2 trihydro-1,3,4 naphtalène et diphényl-2,2 sila-2 indane (que nous noterons successivement I, II et III) montre que l'angle φ -Si- φ des 3 composés présente des valeurs voisines dont la moyenne 111,28° est très proche de la valeur théorique des angles de valence d'un tétraèdre régulier. La valeur des angles C-Si-C reste voisine pour les composés I et II mais diminue fortement dans le composé III. Pour le composé III le resserrement des 2 liaisons Si-C entraîne une légère augmentation de l'ordre de quelques degrés des angles φ -Si-C par rapport à ceux des composés I et II.

Dans les composés II et III, les longueurs des liaisons Si- φ (*sp*³-*sp*²) sont comparables, ainsi que les liaisons Si-C (*sp*³-*sp*³).

Pour le composé I, les liaisons Si- φ sont plus courtes du fait de la forte électronégativité de l'oxygène situé sur l'hétérocycle.

Nous remercions M le Professeur Corriu de nous avoir suggéré cette étude et pour l'intérêt qu'il a apporté aux résultats que nous avons obtenus.

Fig. 3. Angles de valence du silicium et longueurs des arêtes du tétraèdre de centre Si.

	Table	au 6. <i>Plans m</i>	oyens import	tants			
Plan moyen 1 défini par	Si, C(14), C(21) Equation du plan -	-0,431 <i>X</i> +0,598	Y + 0,6750Z =	3,407			
Plan moyen 2 défini par Atome Distance au plan (Å)	C(15), C(16), C(17), Equation du plan - C(15) C(20 -0,0018 -0,002	, C(18), C(19), (- 0,021X+0,878)) C(16) 20 0,0053	C(20) Y + 0,478Z = 6 C(19) 0,0024	,210 C(17) - 0,0049	C(18) 0,0010	C(14) 0,0454	C(21) 0,0158
Plan moyen 3 défini par Atome Distance au plan (Å)	C(2), C(3), C(4), C(Equation du plan 0 C(2) C(3 -0,041 $-0,001$	5), C(6), C(7) , $637X + 0,357Y$) C(4) 13 0,0040	-0,682Z = 0,54 C(5) -0,0013	48 C(6) - 0,0041	C(7) 0,0068		
Plan moyen 4 défini par Atome Distance au plan (Å)	$\begin{array}{c} C(8), C(9), C(19), C\\ Equation du plan 0\\ C(8) C(9)\\ -0,0053 0,004\end{array}$	$\begin{array}{c} C(11), C(12), C(12), C(12), C(12), C(12), C(12), C(12), C(12), C(10), C($	$ \begin{array}{r} 13) \\ +0,735Z = 8,02 \\ C(11) \\ -0,061 \end{array} $	27 C(12) 0,0053	C(13) 0,0005		
Plan moyen 5 défini par Atome Distance au plan (Å)	Si, C(2), C(5) Equation du plan 0 C(3) C(4 -0,696 -0,688	$,967X + 0,107Y \\) C(6) \\ 3 0,685$	-0,228Z = 4,99 C(7) 0,700	91			
Plan moyen 6 défini par Atome Distance au plan (Å)	Si, C(8), C(11) Equation du plan 0 C(9) C(10 -0,123 -0,12	,585X-0,388Y) C(12) 7 0,143	+0,712Z = 7,33 C(13) 0,139	84			
Angle dièdr	e aigu des plans	n°1 et 2 n°1 et 3 n°1 et 4	30,95° 58,55 86,48	n°2 n°2 n°3	2 et 3 2 et 4 3 et 4	88,49° 84,88 77,80	

Références

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- DOYLE, P. A. & TURNER, P. S. (1968). Acta Cryst. A24, 390-397.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1970). Acta Cryst. B26, 274–285.

KARLE, J. & KARLE, I. L. (1966). Acta Cryst. 21, 849-859. LAPASSET, J. (1972). Thèse, Montpellier.

- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- VIDAL, J. P., GALIGNÉ, J. L. & FALGUEIRETTES, J. (1972). Acta Cryst. B28, 3130-3137.
- VIDAL, J. P., LAPASSET, J. & FALGUEIRETTES, J. (1970). Rev. Chim. Minér. 7, 611–622.
- VIDAL, J. P., LAPASSET, J. & FALGUEIRETTES, J. (1972). Acta Crvst. B28, 3137-3144.

Acta Cryst. (1973). B29, 269

Les Hypovanadates MV₃O₇ (M=Ca, Sr, Cd). Structure Cristalline de CaV₃O₇

PAR JEAN-CLAUDE BOULOUX ET JEAN GALY

Service de Chimie Minérale Structurale de l'Université de Bordeaux I, associé au C.N.R.S., 351 cours de la Libération, 33-Talence, France

(Reçu le 24 juillet 1972, accepté le 20 octobre 1972)

The phases MV_3O_7 with M = Ca, Sr, Cd, are isostructural. The structure type has been determined by the X-ray single-crystal method on CaV_3O_7 which crystallizes in the orthorhombic system, space group *Pnam* with the parameters a = 10.459, b = 5.295 and c = 10.382 Å. The layer structure is built up from subunits of three square pyramids, VO_5 , sharing edges: the subunits are linked in the y direction by edges. The calcium atoms are inserted between the layers. The solid solution $Ca_{1-x}Sr_xV_3O_7$ has been investigated in order to determine the influence of the size of the M^{2+} cation on the stability of the structure. The stereochemistry of vanadium(IV) is discussed.

La cristallochimie des phases contenant du vanadium au seul degré d'oxydation (IV) a fait l'objet d'un nombre limité d'investigations structurales approfondies mises à part quelques phases de type spinelle ou pérovskite. Dans le cadre des recherches effectuées au laboratoire sur les systèmes ternaires $MO-V_2O_5-VO_2$ (M = Ca, Sr, Ba, Cd) (Galy & Bouloux, 1967; Bouloux & Galy, 1969; Perez, Frit, Bouloux & Galy, 1970; Bouloux, Perez & Galy, 1972), nous avons été amenés à préciser la nature et les données structurales d'un certain nombre d'hypovanadates notamment CaV₃O₇, SrV₃O₇ et CdV₃O₇.

Deduit (1961) avait signalé l'existence d'un hypovanadate de calcium de formule CaV_3O_7 préparé à 900 °C par action de la chaux CaO sur le dioxyde de vanadium VO₂; il attribue à cette phase un domaine d'homogénéité correspondant à des rapports molaires CaO/VO₂ compris entre 0,26 et 0,42.

La phase CdV_3O_7 avait été préparée par Reuter & Müller (1969) lors de l'étude du système $CdO-VO_2$ par interaction à 700 °C des oxydes CdO et VO_2 . Ces auteurs en donnaient le spectre de diffraction X sans en préciser les caractères cristallographiques.

Synthèse des phases MV_3O_7 (M = Ca, Sr, Cd)

Les phases CaV_3O_7 et SrV_3O_7 ont été préparées à 900°C en tube de Vycor scellé sous vide par action des oxydes CaO ou SrO sur l'oxyde de vanadium VO₂:

CaO (ou SrO) +
$$3VO_2 \rightarrow CaV_3O_7$$
 (ou SrV₃O₇).

 CdV_3O_7 s'obtient à 750 °C par action du cadmium métallique sur un mélange stœchiométrique des oxydes V_2O_5 et V_2O_3 . La réaction est effectuée en 12 heures en tube de Vycor scellé sous vide:

$$4Cd + 5V_2O_5 + V_2O_3 \rightarrow 4CdV_3O_7$$

Les produits obtenus sont trempés après réaction.

Les spectres X de ces trois phases présentent de grandes analogies, laissant prévoir leur isotypie (Tableau 1).

Le spectre X de la phase CaV_3O_7 donné par Deduit est très incomplet (réflexions marquées d'un astérisque); par ailleurs le domaine d'homogénéité annoncé n'a pas été retrouvé.

 CaV_3O_7 et SrV_3O_7 possèdent des points de fusion non congruente vers 1150 °C et 1020 °C respectivement.

Le spectre X de CdV_3O_7 est en bon accord avec celui des auteurs précédents. CdV_3O_7 se décompose dès 850 °C avec volatilisation de cadmium métallique et formation de pyrovanadate $Cd_2V_2O_7$ et d'oxyde VO_2 :

$$3$$
CdV₃O₇ \rightarrow Cd₂V₂O₇ + 7VO₂ + Cd

Remarque: Malgré des essais répétés, il n'a pas été possible de préparer un hypovanadate de baryum $BaV_{3}O_{7}$.